Die Kristallstrukturen von ScHg, ScHg₃, YCd, YHg und YHg₃

Von

E. Laube und H. Nowotny

Aus dem Institut für Physikalische Chemie der Universität Wien

(Eingegangen am 12. Juli 1963)

Die Phasen ScHg, ScHg₃, YCd, YHg und YHg₃ werden aus den metallischen Komponenten hergestellt und kristallchemisch untersucht. ScHg, YCd und YHg gehören zum CsCl-Typ (B 2), ScHg₃ und YHg₃ zum MgCd₃-Typ (DO₁₉).

Im Laufe der Untersuchung weiterer Scandium-Systeme¹ wurden durch Glühen (ungefähr 550° C) von Cadmium bzw. Quecksilber und gefeiltem Scandium bzw. Yttrium in abgeschlossenen Quarzampullen die Kristallarten ScHg, ScHg₃, YCd, YHg und YHg₃ hergestellt. Bei der Präparation ist zu beachten, daß die Vereinigung der metallischen Komponenten unter erheblicher Wärmeentwicklung vor sich geht. Dies erklärt sich aus der großen Differenz in der Elektronegativität der beiden in Reaktion gebrachten Komponenten. Auf Grund der Kristallchemie analoger Systeme (Ba, La, Ce, ...)—(Zn, Cd, Hg...) konnte mit dem bevorzugten Auftreten von AB- und AB₃-Verbindungen gerechnet werden².

Infolge der hohen Reaktivität der 3 a-Elemente trat meist gegenüber dem Ansatz eine Konzentrationsverschiebung ein. In manchen der hergestellten Proben konnte Sc_2O_3 bzw. Y_2O_3 beobachtet werden.

Die Phasen ScHg, YCd und YHg

In Pulveraufnahmen aus Proben gemäß Ansatz Übergangsmetall zu Metametall im Verhältnis 3:1 tritt in allen drei Fällen der CsCl-Typ auf. Im Röntgenogramm einer Legierung Sc—Hg mit 3:1 ist neben dem Muster

¹ E. Laube und H. Nowotny, Mh. Chem. 94, 162 (1963).

 $^{^{2}}$ M. V. Nevitt, Alloy Chemistry of Transition Elements, AIME-Meeting New York, Febr. 1962.

des B2-Typs noch freies Scandium zu beobachten. Bei den analogen Y---Cd-Legierungen konnten neben der Hauptmenge an YCd noch etwas freies Yttrium und relativ viel Y_2O_3 festgestellt werden. Ein ähnlicher Befund lag auch bei Y---Hg-Proben vor. Die Auswertung der raumzentrierten Zelle liefert die nachstehenden Gitterparameter in $kX \cdot E$.

ScHg:
$$a = 3,47_3$$

YCd: $a = 3,71_2$
YHg: $a = 3,67$

Die Auswertung erfolgt in Tab. 1; aus den Intensitäten der Reflexe mit ungeraden h + k + l bzw. geraden h + k + l erkennt man unmittelbar die Richtigkeit der Struktur.

Die Gitterparameter schließen sich vollständig an jene der schon bekannten B 2-Phasen an (s. Tab. 2).

Die Abstände zwischen dem stark elektropositiven Atom und dem elektronegativen weisen einen regelmäßigen Gang auf, was für etwa gleichen Bindungszustand spricht. Wie schon mehrfach betont wurde, muß in allen diesen Phasen mit einem stark polaren Bindungsanteil (Ca, Sr, Ba, Se, Y, La)⁺—(Zn, Cd, Hg)⁻ gerechnet werden².

(hkl)	10³ · sin² ϑ beobachtet	10³ ∙ sin² ϑ berechnet	Intensität berechnet	Intensität geschätzt
(100)	49.1	49.0	6,5	s+
(110)	98.1	97.9	14.0	sst
(111)	147.0	146.9	2.0	SS
(200)	195.6	195.8	2.5	s ⁻
(210)	244.8	244.8	3.0	s
(211)	294.2	293.8	5.0	mst
(220)	391.7	391.7	1.5	SS
(221) (300)	440,8	440,6	$\frac{1,5}{-}$	SS
(310)	489.5	489.6	2,0	s-
(311)	538.4	538,6	0,8	SSS
(222)	587.6	587.5	0,6	SSS
(320)	636.1	636.5	0,7	SSS
(321)	685,7	685, 4	4,0	st^-
(400)	783,2	783,4	0,5	SSS
(410) (322)	832,0	832,3	1,0 1,0	ms
(411) (330)	881,3	881,3	2,8 1,4	\mathbf{st}
(331)	930,4	930,2	1,7	s-
(420)	979,2	979,2	7,0	\mathbf{sst}

Tabelle 1. Auswertung einer Debye-Scherrer-Aufnahme von ScHg, $CuK\alpha$ -Strahlung

Strahlung $10^3 \cdot \sin^2 \vartheta$ 10° · sin² ϑ Intensität Intensität (hkl) beobachtet berechnet berechnet geschätzt (100)42,90,13 85,7 (110)85,5 11.8 sst 128, 60,06 (111)----------(200)171,4 171,4 2,07 m^+ 214,3 (210)214,60,08 SSSS 257,2(211)257,64,0 $^{\rm st}$ (220)343.0342,91,22 \mathbf{s} (300)0,01) -----385,7------(221) 0,02 (310)428,7428,61,68 \mathbf{m} (311)471.50,03-----_____ (222)514.7514,3 0,45 \mathbf{SS} 557,2(320)------0,02-----(321)599,7 600,0 2,50 \mathbf{mst} (400)685,7685,8 0,26SSS (410)0,02728,6 ____ (322)0,02 (411)1,341 771,6 771,5 \mathbf{m}^+ (330) 0,67(331)814.3 ____ 0,02(420)857,2 857,2 1,68m (421)900,10,04 (332)943,1 942,9 2,76 \mathbf{mst}

H. 5/1963] Kristalistrukturen von ScHg, ScHg₃, YCd, YHg und YHg₃ 853

Auswertung einer Debye-Scherrer-Aufnahme von YCd, CuKa-

Auswertung einer Debye-Scherrer-Aufnahme von YHg, CuKa-Strahlung

(hkl)	10 ³ · sin ² ð beobachtet	10 ³ · sin ²	Intensität berechnet	Intensität geschätzt
(100)	43,9	43,9	3.7	s ⁻
(110)	87,4	87,7	22,6	sst
(111)	132,0	131,6	1,2	SSS
(200)	175,3	175,5	4,0	s
(210)	219,7	219,4	1,7	ss
(211)	263,0	263,2	8,0	$^{\rm st}$
(220)	351,3	351,0	2,5	s
(300) (221)	395,1	394,8	$\left. \begin{smallmatrix} 0,2\\0,7 \end{smallmatrix} \right\}$	SSS
(310)	439,1	438,7	3,5	m
(311)	482,6	482,6	0,5	SSS
(222)	526,2	526,4	1,0	ss
(320)	570, 4	570,3	0,4	SSS
(321)	614,2	614,2	5,5	st^{-}
(400)	701,8	701,9	0,7	SSS

(hkl)	10³ • sin² ୬ beobachtet	10 ³ · sin² ϑ berechnet	Intensität berechnet -	Intensität geschätzt
$(410) \\ (322) $	745,5	745,8	$\left. \begin{smallmatrix} 0,4\\ 0,4 \end{smallmatrix} \right\}$	sss
(411) (330)	789,6	789,7	3,0) 1,5	\mathbf{mst}
(331)	833,3	833,5	$0,5^{'}$	SSS
(420)	877,4	877,4	4,0	\mathbf{mst}
(421)	921,2	921,3	1,6	SS
(332)	965,2	965,1	7,5	sst

Tabelle 2

Verbindung	Gitterparameter in Å	Verbindung	Gitterparameter in Å
CaCd CaHg	$3,83_8$ $3,75_8$	ScZn ScCd ScHg	$3,34_7$ $3,50_7$ $3,48_0$
SrCd	$4,01_1$	YCd	$\substack{3,71_2\\3,67_7}$
SrHg	$3,93_0$	YHg	
BaZn	$4,09_0$	LaZn	$3,76_0 \ 3,90_5 \ 3,84_5$
BaCd	$4,21_5$	LaCd	
BaHg	$4,13_3$	LaHg	

Wie M. V. Nevitt² ausführt, verschiebt sich die Stabilität des B 2-Typs bei Kombinationen der 5 a. bis 3 a-Elemente mit den rechtsfolgenden Gruppen des Periodensystems immer stärker gegen die b-Elemente. Daraus ist auch die relativ starke Kontraktion bei 2 a-2 b-Kombinationen zu verstehen.

Die Phasen ScHg₃ und YHg₃

Auf der Seite des Metametalls ließ sich in Sc—Hg- und Y—Hg-Legierungen auf Grund der Pulveraufnahmen jeweils eine Phase mit MgCd₃-Struktur (DO₁₉-Typ) identifizieren. Die Gitterparameter für ScHg₃ und YHg₃ sind nachstehend in $kX \cdot E$. wiedergegeben:

SeHg₃:
$$a = 6,35_6$$
; $c = 4,75_2$; $2 c/a = 1,49_5$
YHg₃: $a = 6,52_8$; $c = 4,86$; $2 c/a = 1,48_9$

Die Auswertung und Intensitätsberechnung geht aus Tab. 3 hervor. Die Übereinstimmung zwischen Beobachtung und Berechnung mit x = 0.833 beweist die Existenz dieser Phasen. Ein Vergleich der Parameter von ScHg₃ und YHg₃ mit dem schon bekannten LaHg₃ läßt die durch Zunahme des Bausteinradius von Sc nach La bedingte Regelmäßigkeit gut erkennen.

	(hkil)	10 ³ · sin ² ት beobachtet	10 ³ · sin ² & berechnet	Intensität berechnet	Intensität geschätzt	
x	(1010)		19.5	2.0		
x	(10 1 1)	45.7	45.7	4.0	SS	
x	$(11\overline{2}0)$	58.5	58.5	2.0	888	
	$(20\overline{2}0)$	77.8	78.0	2,≎ 6,5	9	
	$(20\overline{2}1)$,0	104.1	27.01	5	
	(0002)	104,4	104.7	6.01	\mathbf{st}	
x	$(10\overline{1}2)$		124.2	0,5		
x	(2130)		136.4	0,5		
n	$(21\overline{3}1))$		162.6	1.51		
x	$(11\overline{2}2)($	162,8	163 2	1.0	SS	
r	(3030)		105,2 175.4	1,0		
	$(20\overline{2}2)$	182.6	182.7	3.5	a	
r	(3031)	102,0	201.6	5,5	8	
	$(22\overline{4}0)$	222.6	201,0	4.5		
n	(2139)	233,0	200,0	4,5	8	
u r	(2152)	241,0	241,1	0,0	888	
2	$(10\overline{1}2)$	955.9	200,4	 0 F		
a m	(1013) $(21\overline{4}1)$	200,0	255,0	0,5	SSS	
.0	(3131)	280,0	279,0	0,5	SS	
u	(3032)		200,1	0,51		
	(4040)[312,7	311,8 212 F	0,75	\mathbf{ms}	
	(2023)		313,0 220 0	4,5 J		
	(4041)	338,3	338,0	4,01	\mathbf{mst}	
	(2242)		338,0	9,0ţ		
x	(3142) (3050)		358,1			
x	(3230) (91 <u>3</u> 9)	270.9	370,3	~~~~		
x	(2133) $(20\overline{5}1)$	372,3	372,0	0,5	SSS	
x	(3231)	390,9	390,0	0,5	888	
x	(4100) (90 <u>5</u> 9)		409,3		*	
x	(3033)		410,9			
	(4042)	417.4	416,5	1,0	8	
	(0004)	,_	418,7	0,51	5	
x	(4151)		435,5			
x	(1014)		438,2			
x	(3252)	476.4	475,0	0,1	aaa	
x	(1124)		477,2	0,2∫	666	
x	(5050)		487,3			
x	(3143)	488,7	488,9	0,5	SSS	
	(2024)	496,5	496,7	1,0	s-	
x	(5051)		513,4			
x	(4152)	514,0	514,0	0,5	SSS	
x	(3360)		526,2			
	(4260)	546.2	545,7	0,5	s ⁺	
	(4043)		547,4	2,01	2	
x	(2134)		555,1			
	(4201) (7070)	572,2	571,9	4,0	m	
x	(5052) (20互い		592,0			
x	(3034)		594,1			

Tabelle 3. Auswertung einer Debye-Scherrer-Aufnahme von ScHg3, CuK α -Strahlung

	(hkil)	$10^3 \cdot \sin^2 \vartheta$ beobachtet	10 ³ · sin ² & berechnet	Intensität berechnet	Intensität geschätzt
 x	(5160)		604,2		
x	$(32\overline{5}3)$	605.8	605, 8	0,25	SSS
x	$(51\overline{6}1)$	630.3	630.4	0.25	SSS
x	$(33\overline{6}2)$		630.9		
r	(4153)		644.8	_	_
w	$(42\overline{6}2))$		650.4	1.251	
	$(22\overline{4}4)($	652,0	652.6	2.5	mst
r	$(31\overline{4}4)$		672.1		_
n	$(10\overline{1}5)$		673.8	_	·
w	$(60\overline{6}0)$	701.8	701.6	1.5	8-
r	$(51\overline{6}2)$		708.9		~
r	$(43\overline{7}0)$		721.1		_
n N	(1010) $(50\overline{5}3)$		722.8		
w	(6061) (6061)	_	727.8		
	$(40\overline{4}4)$		730.5	0.5)	
	(2025)(731,6	732.3	2.01	m
07	(4371)		747 3	<i>2</i> ,0,	
a M	(5270)		760 1		
x	(1210)	781.0	781.3	4.5	st
~	(4203) (5971)		786.3	1,0	
d N	(3271)		789.0		
a v	(9125)		790.7		
ı	(6062)	806.5	806.3	3.0	m
<i>or</i>	(4379)	000,0	825.8		
s. S	(4154)	828.0	828.0	0.5	222
n	$(30\overline{3}5)$	020,0	829.7		
a M	(6170)		838 1		_
a v	(5163)	839 7	839 7	0.5	593
a r	(6171))	000,1	864.2	0.51	<i></i>
~	(5979)	864, 5	864.8	0,5	s^{-}
a m	(5272)		906.0		
x	$(31\overline{4}5)$	907.7	907 7	0.5	555
,u	$(44\overline{8}0)$	935.6	935.5	2.5	8
	(6063)		937.2		~
	(0006)	942.3	942.1	1.0	s ⁻
œ	$(61\overline{7}2)$	012,0	942.8		~
x x	$(33\overline{6}4)$	944 7	944.9	0.5	888
a r	(5380)	955 0	955.0		
n n	(7070)	955.0	955.0		
x	(4373)	956.8	956.7	0,5	SSS
\hat{x}	$(10\overline{16})$		961.6		
	$(42\overline{6}4)$	964.2	964.4	3.5)	
	$(40\overline{4}5)$	966.2	966.1	5,51	sst dittus
x	$(70\overline{7}1)_{1}$			0,51	
x	(5381)	981,1	981,2	1,0)	SSS

856 E. Laube und H. Nowotny: ScHg, ScHg₃, YCd, YHg und YHg₃

- The Lemma					
	(hkil)	10 ³ · sin ² ϑ heohachtet	10 ^s · sin² ϑ berechnet	Intensität	Intensität
		Deobachiet		bereenner	gesenner
x	$(10\bar{1}0)$		18.5	1.0	
x	$(10\overline{1}1)$		43.5	2.0	
\hat{x}	$(11\overline{2}0)$		55.4	1.0	
	$(20\overline{2}0)$	74.1	73.9	8.0	SS
	$(20\overline{2}1)$,.	98.9	30.01	20
	(0002)	99,6	100.0	6.5(sst
- YP	$(10\overline{1}2)$		118.5	0,01	
n n	$(21\overline{2})$		190.2		
<i>.</i> <i>n</i>	(2130) $(91\overline{9}1)$		129,0	1.0)	
x	(4131)]	153,9	104,0	1,0	
x	(1122)		155,4	0,61	sss annus
x	(3030)	154.0	166,2	0,25	
	(2022)	174,6	173,9	4,5	8-
x	(3031)		191,2		
	(2240)	221,9	221,6	6,5	s^+
x	(2132)		239,3		
x	$(31\bar{4}0)$		240,1		
x	$(10\overline{1}3)$		243,5		
x	$(31\overline{4}1)$		265,1	0,35	
x	$(30\overline{3}2)$		266,2		
	$(40\overline{4}0)$	000 O	295,5	1,0)	1:00
	$(20\overline{2}3)$	298,2	298,9	5,5	m diffus
	$(40\overline{4}1))$	0.000	320.5	5.0)	
	$(22\overline{4}2)$	320,8	321.6	6.5	mst
x	$(31\overline{4}2)$		340.1	-,-,	
x	$(32\overline{50})$		350.9		
x	$(21\overline{3}3)$	353.8	354.3	0.25	999
x	$(32\overline{5}1)$		375.9	0,20	565
r	$(41\overline{5}0)$		387.9	0,20	
$\frac{w}{r}$	$(30\overline{3}3)$		391.2		
w	$(40\overline{4}2)$		1205 5	1.0)	
	$(\pm 0\pm 2)$	397,8) 400 0	1,0	s diffus
00	(4151)		412.0	1,0)	
a	(± 101)		412,9		
x	(1014) (2970)		418,0		
x	(3232)		400,9		
x	(1124)		455,4		·
x	(0000)		461,8		
x	(3143)		465,1		
	(2024)	473,8	473,9	1,0	SS
x	(5051)		486,8		
x	(4152)		487,8		
x	(3360)		498,7		
	(4260)	519.2	517,2	1,0	ma diffus
	(4043)	010,4	520,5	2,5)	ins unius
x	(2134)		529,3		
	(4261)	541,8	542,2	5,0	m
x	(5052)		561,8		
x	(3034)		566,2		
x	(5160)		572, 6	<u> </u>	
x	(3253)		575,9		
x	$(51\overline{6}1)$		597, 6	**	

Auswertung einer Debye-Scherrer-Aufnahme von YHg3, CuK α -Strahlung

	(hkil)	10 ³ · sin ² 3 beobachtet	10 ³ · sin² ን berechnet	Intensität berechnet	Intensität geschätzt
x	$(3\overline{6}32)$	_	598.7		
x	$(41\overline{5}3)$		612.9		
	$(42\overline{6}2))$		(617.2	1.5)	
	$(22\overline{4}4)$	619,3	621,6	3,0	m diffus
x	$(31\overline{4}4)$		640,1		
x	$(10\overline{1}5)$		643,5		······
	$(60\overline{6}0)$	664, 4	664,9	1,5	s
x	$(51\overline{6}2)$	·	672, 6		
x	(4370)		683,4		
x	$(50\overline{5}3)$		686, 8		
	$(60\overline{6}1)$		689,9		
	$(40\tilde{4}4)$]	600 C	(695,5	0,75	and differen
	$(20\overline{2}5)$	098,0	(698,9	2,5	m annus
x	$(43\overline{7}1)$		708, 4		
x	$(52\overline{7}0)$		720,3		
	$(42\overline{6}3)$	742,4	742,2	5,0	\mathbf{m}^+
x	(5271)	_	745,3		
x	$(32\overline{5}4)$		750,9		
x	$(21\overline{3}5)$		754,3		
	$(60\bar{6}2)$	765,0	764,9	3,5	m^{-}
x	$(43\overline{7}2)$	—	783,4		
x	(4154)		787,9		
x	(3035)		791,2		
x	(6170)		794,2		
x	(5163)	—	797,6		
x	(6171)		819,2		
x	(5272)		820,3		
x	(5054)		861,8		
x	(3145)	800,7	805,1	0,2	SSS
	(4480)	880,4	880,0	2,5	S
	(0003) (0150)		889,9		
x	(0172) $(22\overline{c}4)$		894,Z		
x	(0004)	200.0	898,7	1.0	~
	(0000)	899,9	900,0	1,0	8
x	(5380)		905,0		
u M	(1373)		909,0		
u	(4964)	017 /	900,4	3.0	<u>e</u> +
æ	$(10\overline{1}6)$	J17,*	918.5	a ,0	
N	$(40\overline{4}5)$	920-3	920.5	4 5	mst
r	(7071)	520,0	930.0		
x	$(53\overline{81})$		930.0	0.25	
x	$(52\overline{7}3)$	_	945,3		
x	$(11\overline{2}6)$	_	955,4		
	$(62\overline{8}0)$	960,3	960,4	2,0	s⁻
x	$(51\overline{6}4)$		972, 6		
	$(20\overline{2}6)$	973, 6	973, 9	2,5	s
x	$(32\overline{5}5)$	976, 1	975,9	0,5	SSS
	$(62\overline{8}1)$	088.0	1985,4	20,0	set diffue
	$(44\overline{8}2)$	200,0	\986,6	2 4 ,0ĵ	sou unius

xÜberstrukturlinien; Intensitäten, deren Wert<0,2berechnet wurde, sind in Tab.3 mit $-\!\!-\!$ bezeichnet.